27 int num_u_vertices,
int num_v_vertices) :
31 _num_u_vertices(num_u_vertices),
32 _num_v_vertices(num_v_vertices)
43 int num_segments = num_u_segments * num_v_segments;
45 _composed.reserve(num_segments);
46 for (
int i = 0; i < num_segments; i++) {
47 _composed.push_back(ComposedMats());
50 for (
int vi = 0; vi < num_v_segments; vi++) {
51 const LMatrix4 &v_basis_transpose = _v_basis.
get_basis(vi);
54 nassertv(vn >= 0 && vn + v_order - 1 < _num_v_vertices);
56 for (
int ui = 0; ui < num_u_segments; ui++) {
57 const LMatrix4 &u_basis_mat = _u_basis.
get_basis(ui);
60 nassertv(un >= 0 && un + u_order - 1 < _num_u_vertices);
64 LMatrix4 geom_x, geom_y, geom_z, geom_w;
70 for (
int uni = 0; uni < 4; uni++) {
71 for (
int vni = 0; vni < 4; vni++) {
72 if (uni < u_order && vni < v_order) {
73 const LVecBase4 &vec = vecs[verti(un + uni, vn + vni)];
74 geom_x(uni, vni) = vec[0];
75 geom_y(uni, vni) = vec[1];
76 geom_z(uni, vni) = vec[2];
77 geom_w(uni, vni) = vec[3];
86 nassertv(i >= 0 && i < (
int)_composed.size());
87 ComposedMats &result = _composed[i];
88 result._x = u_basis_mat * geom_x * v_basis_transpose;
89 result._y = u_basis_mat * geom_y * v_basis_transpose;
90 result._z = u_basis_mat * geom_z * v_basis_transpose;
91 result._w = u_basis_mat * geom_w * v_basis_transpose;
111 int i = segi(ui, vi);
112 nassertv(i >= 0 && i < (
int)_composed.size());
114 PN_stdfloat u2 = u*u;
115 LVecBase4 uvec(u*u2, u2, u, 1.0f);
116 PN_stdfloat v2 = v*v;
117 LVecBase4 vvec(v*v2, v2, v, 1.0f);
119 PN_stdfloat weight = vvec.dot(uvec * _composed[i]._w);
121 point.set(vvec.dot(uvec * _composed[i]._x) / weight,
122 vvec.dot(uvec * _composed[i]._y) / weight,
123 vvec.dot(uvec * _composed[i]._z) / weight);
133 int i = segi(ui, vi);
134 nassertv(i >= 0 && i < (
int)_composed.size());
136 PN_stdfloat u2 = u*u;
137 LVecBase4 uvec(u*u2, u2, u, 1.0f);
138 LVecBase4 duvec(3.0f * u2, 2.0f * u, 1.0f, 0.0f);
139 PN_stdfloat v2 = v*v;
140 LVecBase4 vvec(v*v2, v2, v, 1.0f);
141 LVecBase4 dvvec(3.0f * v2, 2.0f * v, 1.0f, 0.0f);
143 LVector3 utan(vvec.dot(duvec * _composed[i]._x),
144 vvec.dot(duvec * _composed[i]._y),
145 vvec.dot(duvec * _composed[i]._z));
147 LVector3 vtan(dvvec.dot(uvec * _composed[i]._x),
148 dvvec.dot(uvec * _composed[i]._y),
149 dvvec.dot(uvec * _composed[i]._z));
151 normal = utan.cross(vtan);
160 int i = segi(ui, vi);
161 nassertr(i >= 0 && i < (
int)_composed.size(), 0.0f);
163 PN_stdfloat u2 = u*u;
164 LVecBase4 uvec(u*u2, u2, u, 1.0f);
165 PN_stdfloat v2 = v*v;
166 LVecBase4 vvec(v*v2, v2, v, 1.0f);
168 PN_stdfloat weight = vvec.dot(uvec * _composed[i]._w);
172 const LMatrix4 &v_basis_transpose = _v_basis.
get_basis(vi);
173 const LMatrix4 &u_basis_mat = _u_basis.
get_basis(ui);
183 for (
int uni = 0; uni < 4; uni++) {
184 for (
int vni = 0; vni < 4; vni++) {
185 if (uni < u_order && vni < v_order) {
191 LMatrix4 composed = u_basis_mat * geom * v_basis_transpose;
192 return vvec.dot(uvec * composed) / weight;
203 PN_stdfloat result[],
int num_values)
const {
204 int i = segi(ui, vi);
205 nassertv(i >= 0 && i < (
int)_composed.size());
207 PN_stdfloat u2 = u*u;
208 LVecBase4 uvec(u*u2, u2, u, 1.0f);
209 PN_stdfloat v2 = v*v;
210 LVecBase4 vvec(v*v2, v2, v, 1.0f);
212 PN_stdfloat weight = vvec.dot(uvec * _composed[i]._w);
216 const LMatrix4 &v_basis_transpose = _v_basis.
get_basis(vi);
217 const LMatrix4 &u_basis_mat = _u_basis.
get_basis(ui);
224 for (
int n = 0; n < num_values; n++) {
228 for (
int uni = 0; uni < 4; uni++) {
229 for (
int vni = 0; vni < 4; vni++) {
230 if (uni < u_order && vni < v_order) {
237 LMatrix4 composed = u_basis_mat * geom * v_basis_transpose;
238 result[n] = vvec.dot(uvec * composed) / weight;
246 int NurbsSurfaceResult::
247 find_u_segment(PN_stdfloat u) {
257 if (_last_u_segment != -1 && (u >= _last_u_from && u < _last_u_to)) {
258 return _last_u_segment;
264 _last_u_segment = segment;
265 _last_u_from = _u_basis.
get_from(segment);
266 _last_u_to = _u_basis.
get_to(segment);
276 int NurbsSurfaceResult::
277 r_find_u_segment(PN_stdfloat u,
int top,
int bot)
const {
282 int mid = (top + bot) / 2;
285 PN_stdfloat from = _u_basis.
get_from(mid);
286 PN_stdfloat to = _u_basis.
get_to(mid);
289 return r_find_u_segment(u, top, mid - 1);
291 }
else if (to <= u) {
293 return r_find_u_segment(u, mid + 1, bot);
306 int NurbsSurfaceResult::
307 find_v_segment(PN_stdfloat v) {
317 if (_last_v_segment != -1 && (v >= _last_v_from && v < _last_v_to)) {
318 return _last_v_segment;
324 _last_v_segment = segment;
325 _last_v_from = _v_basis.
get_from(segment);
326 _last_v_to = _v_basis.
get_to(segment);
336 int NurbsSurfaceResult::
337 r_find_v_segment(PN_stdfloat v,
int top,
int bot)
const {
342 int mid = (top + bot) / 2;
345 PN_stdfloat from = _v_basis.
get_from(mid);
346 PN_stdfloat to = _v_basis.
get_to(mid);
349 return r_find_v_segment(v, top, mid - 1);
351 }
else if (to <= v) {
353 return r_find_v_segment(v, mid + 1, bot);
NurbsSurfaceResult(const NurbsBasisVector &u_basis, const NurbsBasisVector &v_basis, const LVecBase4 vecs[], const NurbsVertex *verts, int num_u_vertices, int num_v_vertices)
The constructor automatically builds up the result as the product of the indicated set of basis matri...
const LMatrix4 & get_basis(int segment) const
Returns the basis matrix associated with the nth segment.
int get_num_segments() const
Returns the number of piecewise continuous segments in the curve.
void transpose()
Transposes the basis matrices stored in the vector.
PN_stdfloat get_from(int segment) const
Returns the t value of the beginning of this segment.
PANDA 3D SOFTWARE Copyright (c) Carnegie Mellon University.
int get_vertex_index(int segment) const
Returns the vertex index of the nth segment.
PN_stdfloat get_start_v() const
Returns the first legal value of v on the surface.
PN_stdfloat get_to(int segment) const
Returns the t value of the end of this segment.
This represents a single control vertex in a NurbsEvaluator.
PN_stdfloat get_end_v() const
Returns the last legal value of v on the surface.
int get_order() const
Returns the order of the segments in the curve.
PN_stdfloat get_start_u() const
Returns the first legal value of u on the surface.
This encapsulates a series of matrices that are used to represent the sequential segments of a NurbsC...
PANDA 3D SOFTWARE Copyright (c) Carnegie Mellon University.
PN_stdfloat get_end_u() const
Returns the last legal value of u on the surface.
void eval_segment_point(int ui, int vi, PN_stdfloat u, PN_stdfloat v, LVecBase3 &point) const
Evaluates the point on the surface corresponding to the indicated value in parametric time within the...
PN_stdfloat get_extended_vertex(int d) const
Returns an n-dimensional vertex value.
void eval_segment_normal(int ui, int vi, PN_stdfloat u, PN_stdfloat v, LVecBase3 &normal) const
As eval_segment_point, but computes the normal to the surface at the indicated point.
PN_stdfloat eval_segment_extended_point(int ui, int vi, PN_stdfloat u, PN_stdfloat v, int d) const
Evaluates the surface in n-dimensional space according to the extended vertices associated with the s...
void eval_segment_extended_points(int ui, int vi, PN_stdfloat u, PN_stdfloat v, int d, PN_stdfloat result[], int num_values) const
Simultaneously performs eval_extended_point on a contiguous sequence of dimensions.